Dielectric properties of polymer composites with the addition of ferrite nanoparticles

نویسندگان

  • A Kisiel
  • M Konieczny
چکیده

The aim of the work was examination of the dielectric properties of a new type of polymer nanocomposites based on PVDF (polyvinylidene fluoride), or a copolymer P(VDF-HFP) with addition of ferrite nanoparticles. The addition of nanofillers leads not only to the formation of polar -phase of PVDF, which shows unique piro-, piezoand ferroelectric properties used in many applications, but also affects the dielectric and magnetoelectric properties of these nanocomposites. In the work the dielectric properties of polymer composites, such as volume resistivity, permittivity and dielectric loss were investigated Measurements of dielectric parameters were performed in a climate chamber at temperature range of 25-100°C, at selected frequencies in the range 20-200 kHz. The results obtained are valuable not only for an application of this type of nanocomposites in various types of transducers, but also for analysis of the physical phenomena occurring in the polymer composites doped with nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Zinc Nanoferrite Doped HPMC Polymers Using X-Ray Diffraction

HPMC Polymer composites were prepared by doping various concentrations of Zinc ferrite nanoparticles using solution casting method. These polymer composites were characterized using X-Ray Diffraction and conductivity measurements. The addition of nanoferrites in the polymer matrix do change the structural and the AC conductivity properties of the film, which is supported by the results obtained...

متن کامل

Improvement of Dielectric, Magnetic and Thermal Properties of OPEFB Fibre–Polycaprolactone Composite by Adding Ni–Zn Ferrite

The dielectric and magnetic behaviour and thermal properties of composites based on nickel–zinc ferrite (NZF) filler can be improved by the addition of various types of materials. Amongst others, ferrite–polymer composites have been subjected to a wide range of research, due to their extensive applications: electromagnetic interference shielding, microwave absorption, electrodes and sensors. Cu...

متن کامل

Chitosan/nanosilver Nanofiber Composites with Enhanced Morphology and Microbiological Properties

In recent years natural polymers have been widely used in biomedical applications. Application of natural and biocompatible polymers in wound dressing, medical sutures and tissue engineering are extensively growing. Additional properties are provided when metal nanoparticles such as silver and gold are incorporated in to the fibers. However, nowadays nanofibers due to their inherent properties ...

متن کامل

Future MISFET gate dielectric: NiO/PVA Nanohybride composites

This paper has reported on the electrical and nonstructural of polymer-based materials in corporation NiO (Nickel oxide) in concentrations of 0.2%, 0.4% and 0.8% by weight of PVA (polyvinyl alcohol) polymer. Nanocrystallites phases and properties were characterized with using X-ray diffraction (XRD), Fourier transfer infrared radiation (FTIR),Energy distribution X-ray(EDX) techniques and X-Map ...

متن کامل

Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications

Dielectric properties of in-situ formed silver (Ag) incorporated carbon black (CB)/polymer composites were studied. In-situ formed Ag nanoparticles in the Ag/CB/epoxy composites increased the dielectric constant (K) value and decreased the dissipation factor (Df). The remarkably increased dielectric constant of the nanocomposite is due to the piling of charges at the extended interface of the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016